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Abstract:  A general arrival and Markovian service time queueing system with one server under first come first served 

discipline was considered, where the 𝑖𝑗 element of transition probability is given as matrix 𝐹 and the system can 

accommodates infinite number of arrival. The steady state transition probability were obtained and compared with 

the result from Markovian arrival and Markovian service times queueing system (M/M/1). The formulae for 

waiting time distribution, probability distribution and density functions for the response time (total system time) in 

a G/M/1 system were obtained. Illustrative numerical examples were demonstrated to shown its usefulness in 

solving the real life problem. We arrived at the following values for the root of equation of Z-transform of the 

number of service completions that occur during an interarrival period,  𝜉𝑗 = 0.600, 0.6115, 0.6153, 0.6206, 

0.6223,  0.6267,  ⋯,  Which is eventually converges to 𝜉 = 0.645705.  Therefore, the probabilities that it contains 

zero, one or two customers are given, respectively by 0.4, 0.12 and 0.182. The probability that arrival find the 

system empty is 0.5, the mean number of customers seen by an arrival is 1.0 and the mean time spent waiting in 

this system is 0.2. 
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Introduction 

The G/M/1 queue is a single-server queue, the service process 

has an exponential distribution with mean service time, 1/𝜇, 

i.e., 𝐵(𝑥) = 1 − 𝑒−𝜇𝑥 ,     𝑥 ≥ 0,  (Medhi, 1980); while the 

arrival process is general with mean inter-arrival time equal to  

1/𝜆.  Customers arrive individually and their inter-arrival 

times are independent and identically distributed. As a result, 

the notation G/M/1 is sometimes used to stress this 

independence of arrivals. We shall denote the arrival 

distribution by 𝐴(𝑡) and its probability density function by 

𝑎(𝑡). 
To represent this system by a Markov chain, it is necessary to 

keep track of the time that passes between arrivals, since the 

distribution of interarrival times does not in general possess 

the memoryless property of the exponential. As was the case 

for the M/G/1 queue, a two-component state descriptor may 

be used; the first to indicate the number of customers present 

and the second to indicate the elapsed time since the previous 

arrival. In this way, the G/M/1 queue can be solved using the 

method of supplementary variables. It is also possible to 

define a Markov chain embedded within the G/M/1 queue, 

and this is the approach that we shall follow here. The 

embedded time instants are precisely the instants of customer 

arrivals, since the elapsed interarrival time at these moments 

is known – it is exactly equal to zero. This allows us to form a 

transition probability matrix and to compute the distribution 

of customers as seen by an arriving customer. Unfortunately, 

the PASTA property no longer holds (we do not have Poisson 

arrivals) and so we cannot conclude that the distribution as 

seen by an arrival is the same as that seen by a random 

observer: indeed they are not the same. 

 

Nomenclature 

𝐵(𝑥): Service Process 

𝐴(𝑡): Arrival Distribution 

𝑎(𝑡): Arrival Probability Density Function 

𝑀𝐾 :  The number of Customers Present in a G/M/1 queue just 

Prior to the 𝑘𝑡ℎ  Arrival 

𝐵𝑘+1: The number of Service Completions that occur between 

the arrival of the 𝑘𝑡ℎ customer and that of the (𝑘 + 1)𝑡ℎ  

customer 

𝑓𝑖𝑗: The  𝑖𝑗  element of the transition probability matrix  𝐹 

𝛽𝑖: The probability that 𝑖 customers complete their service 

during the period 𝑘𝑡ℎ and (𝑘 + 1)𝑡ℎ arrivals 

𝜋𝑖: Stationary probability of an arrival finding 𝑖 customers 

already present 

𝐺𝐵(𝑧): Z-transform of the number of service completions that 

occur during an interarrival period 

𝜉: The root of the equation 𝐺𝐵(𝑧) 
𝐸[𝑁𝐴]: The mean number in this system at arrival epoch 

𝜆: Arrival rate 

𝑊𝑞: Waiting time distribution function of the customer in the 

queue 

𝑤𝑞: Mean time waiting in the system 

 

Materials and Methods 

We shall construct the transition probability matrix of the 

Markov chain embedded at arrival instants and write its 

solution. Let 𝑀𝑘  be the number of customers present in a 

𝐺/𝑀/1 queue just prior to the 𝑘𝑡ℎ arrival. Let 𝐵𝐾+1 be the 

number of service completions that occur between the arrival 

of the 𝑘𝑡ℎ customer and that of the (𝑘 + 1)𝑡ℎ  customer. It 

follows that 

𝑀𝑘+1 = 𝑀𝑘 + 1 − 𝐵𝑘+1 (William, 2009). 

The 𝑖 𝑗 element of the transition probability matrix F, namely, 

𝑓𝑖𝑗 = 𝑃𝑟𝑜𝑏{𝑀𝑘+1 = 𝑗 |𝑀𝑘 = 𝑖}, 

is equal to the probability that 𝑖 +  1 −  𝑗 customers are 

served during an arbitrary interarrival time. 

This must be equal to zero when 𝑖 <  𝑗 − 1 (the second of 

two consecutive arrivals cannot find more than one additional 

customer to the number that the first finds). Also, an arrival 

can find any number of customers from a minimum of zero to 

a maximum of one more than its predecessor finds. In other 

words, the transition probability matrix has a lower 

Hessenberg structure. The probability that i customers 

complete their service during the period between the 𝑘𝑡ℎ and 

(𝑘 + 1)𝑡ℎ  arrivals is given by 

𝛽𝑖 = 𝑃𝑟𝑜𝑏{𝐵𝑘+1 = 𝑖} = ∫ 𝑒−𝜇𝑡
(𝜇𝑡)𝑖

𝑖 !
 𝑑𝐴(𝑡)

∞

0
, (William, 2009) 

and, given the independence and identical distribution of 

interarrival times, the transition probability matrix is given by 
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𝐹 =

(

 
 
 
 

1 − 𝛽0 𝛽0 0      0        ⋯

1 −∑𝛽𝑖

1

𝑖=0

𝛽1 𝛽0     0      ⋯

1 −∑𝛽𝑖

2

𝑖=0

𝛽2 𝛽1𝛽1       ⋯
)

 
 
 
 

 

                       ⋮           ⋮      ⋮        ⋮         ⋱          
 

It is apparent that this matrix is irreducible and a periodic 

when 𝛽0  >  0 and 𝛽0  +  𝛽1  <  1.  

It turns out that the solution to this Markov chain is geometric 

in form. In other words, there exists a 𝜉, 

0 <  𝜉 <  1,  

such that 

𝜋𝑖 = 𝐶𝜉
𝑖 ,          𝑖 ≥ 0, 

where 𝜋𝑖 is now the stationary probability of an arrival 

finding i customers already present. To show that this is the 

case, we shall replace 𝜋𝑖  with 𝐶𝜉𝑖  in the system of equations, 

𝜋 =  𝜋𝐹, and find the restrictions that this imposes on 𝜉 so 

that 𝜋𝑖= 𝑪𝝃𝒊 is indeed the solution we seek. Extracting the 𝑘𝑡ℎ 

equation from this system of equations, we find 

𝜋𝑘 = ∑ 𝜋𝑖
∞
𝑖=0 𝑓𝑖𝑘 = ∑ 𝜋𝑖

∞
𝑖=𝑘−1 𝑓𝑖𝑘 = ∑ 𝜋𝑖

∞
𝑖=𝑘−1    for 𝑘 ≥ 1.  

We do not need to be concerned with the case 𝑘 =  0, since in 

considering 

 𝜋(𝐹 −  𝐼 )  =  0, the first equation is a linear combination of 

all the others. Substituting 𝜋𝑘= 𝑪𝝃𝒌  gives 

𝐶𝜉𝑘 = ∑ 𝐶𝜉𝑖∞
𝑖=𝑘−1 𝛽𝑖+1−𝑘        for𝑘 ≥ 1. 

Now, when we divide through by  𝐶𝜉𝑘−1,  we obtain 

𝜉 = ∑ 𝜉𝑖−𝑘+1
∞

𝑖=𝑘−1

𝛽𝑖+1−𝑘    =∑𝜉𝑗
∞

𝑗=0

𝛽𝑗 = 𝐺𝐵(𝜉), 

where 𝐺𝐵(𝑧) is the z-transform of the number of service 

completions that occur during an interarrival period. This then 

is the condition that we must impose on 𝜉 in order for the 

solution to be given by 𝜋𝑖= 𝐶𝜉𝑖: namely, that 𝜉 be a root of 

the equation z = GB(z). One root of this system is obviously 𝜉 

= 1; however, we need a root that is strictly less than 1. When 

the steady state exists, the strict convexity of 𝐺𝐵(𝑧) implies 

that there is exactly one root of  𝑍 = 𝐺𝐵(𝑧) that lies strictly 

between zero and one: this root is the value 𝜉 for which 𝐶𝜉𝑖 is 

the probability of an arrival finding i customers already 

present. Furthermore, 

𝜉 = ∑ 𝜉𝑗∞
𝑗=0 𝛽𝑗 = ∑ 𝜉𝑗∞

𝑗=0 ∫
(𝜇𝑡 )

𝑗

𝑗 !

∞

0
𝑒−𝜇𝑡  𝑑𝐴(𝑡) =

∫ 𝑒−(𝜇−𝜇𝜉)𝑡𝑑𝐴(𝑡) = 𝐹𝐴
∗(𝜇 − 𝜇𝜉)

∞

0
 (Bolch, 1998) 

Observe that the right-hand side is the Laplace transform of 

the probability density function of interarrival time, evaluated 

at the point 𝜇 −  𝜇𝜉. The solution 𝜉 to this functional equation 

may be obtained by successively iterating with 

𝜉(𝑗+1) = 𝐹𝐴
∗(𝜇 − 𝜇𝜉(𝑗))  --------------- (2.1) 

and taking the initial approximation, 𝝃(𝟎), to lie strictly 

between zero and one. As for the constant 𝐶, it may be 

determined from the normalization equation. We have 

1 =∑𝐶𝜉𝑖 = 𝐶 
1

1 − 𝜉

∞

𝑗=0

 

i.e.,    𝐶 = (1 − 𝜉). This leads to conclude that 

𝜋𝑖 = (1 − 𝜉)𝜉
𝑖 . 

It is impossible not to recognize the similarity between this 

formula and the formula for the number of customers in an 

𝑀/𝑀/1 queue, namely, 𝑝𝑖  =  (1 −  𝜌)𝜌𝑖 , 𝑖 ≥  0,  
where 𝜌 =  𝜆/𝜇. It follows by analogy with the 𝑀/𝑀/1  

queue that performance measures, such as the mean number 

of customers present, can be obtained by replacing 𝜌 with 𝝃 in 

the corresponding formulae for the 𝑀/𝑀/1 queue. 

Thus, for example, whereas 1 − 𝜌 is the probability that no 

customers are present in an 𝑀/𝑀/1  queue, 1 −  𝜉 is the 

probability that an arrival in a 𝐺/𝑀/1 queue finds it empty; 

the mean number in an 𝑀/𝑀/1 queue is 𝜌/(1 −  𝜌) and the 

variance is 𝜌/(1 −  𝜌)2, while the mean and variance of the 

number of customers seen by an arrival in a G/M/1 queue are 

𝜉/(1 − 𝜉 ) and 𝜉/(1 − 𝜉 )2, respectively, and so on. It is 

important to remember, however, that 𝜋 is the probability 

distribution as seen by an arrival to a 𝐺/𝑀/1 queue and that 

this in not equal to the stationary distribution of this queue. If, 

indeed, the two are the same, it necessarily follows that 𝐺 =
 𝑀. Finally, results for the stationary distribution of customers 

in a 𝐺/𝑀/1 queue—the equilibrium distribution as seen by a 

random observer, rather than that seen by an arriving 

customer – are readily available from the elements of the 

vector π. First, although 𝜋0  =  1 −  𝜉 is that probability that 

an arrival finds the system empty, the stationary probability of 

the system being empty is actually 𝑝0  =  1 −  𝜌.  
Furthermore, the stationary probability of a G/M/1 queue 

having 𝑘 >  0 customers is given by 

𝑝𝑘 = 𝜌(1 − 𝜉)𝜉
𝑘−1 = 𝜌𝜋𝑘−1 for  𝑘 > 1 (Kleinrock, 1975). 

Thus once the variable 𝜉 has been computed from Equation 

(2.1), the stationary distribution is quickly recovered. 

 

Waiting time distributions in a G/M/1 queue 

The distribution of customers at arrival epochs is generally not 

that which is sought (the distribution of customers as seen by 

a random observer being the more usual), it is exactly that 

which is needed to compute the distribution of the time spent 

waiting in a 𝐺/𝑀/1 queue before beginning service. When 

the scheduling policy is first come, first served, an arriving 

customer must wait until all the customers found on arrival 

are served before this arriving customer can begin its service. 

If there are n customers already present, then an arriving 

customer must wait through 𝑛 services, all independent and 

exponentially distributed with mean service time 1/𝜇. An 

arriving customer that with probability 𝜋𝑛  =  (1 −  𝜉 )𝜉
𝑛  

finds 𝑛 >  0 customers already present, experiences a waiting 

time that has an Erlang-n distribution. There is also a finite 

probability 𝜋0  =  1 −  𝜉 that the arriving customer does not 

have to wait at all. The probability distribution function of the 

random variable 𝑇𝑞  that represents the time spent waiting for 

service will therefore have a jump equal to 1 − 𝜉 at the point 

𝑡 =  0.  

For 𝑡 >  0, we may write 

𝑊𝑞(𝑡) = 𝑃𝑟𝑜𝑏{𝑇𝑞 ≤ 𝑡}

= ∑∫
𝜇(𝜇𝑥)𝑛−1

(𝑛 − 1)!
𝑒−𝜇𝑥𝑑𝑥 (1 −

𝑡

0

∞

𝑛=1

 𝜉)𝜉𝑛

+ (1 − 𝜉) 

= 𝜉(1 − 𝜉)∫𝜇 𝑒−𝜇𝑥(1−𝜉)𝑑𝑥 + (1 − 𝜉)

𝑡

0

 

= 1 − 𝜉𝑒−𝜇(1−𝜉)𝑡 ,   𝑡 > 0 (Lucantoni, 1993). 

This formula also gives the correct result 1 − 𝜉  when 𝑡 = 0 

and so 

𝑊𝑞(𝑡) = 1 − 𝜉𝑒
−𝜇(1−𝜉)𝑡 ,   𝑡 ≥ 0, ---------------- (3.1)   

The mean waiting time is  

𝑊𝑞 = 𝐸[𝑇𝑞] =
𝜉

𝜇(1−𝜉)
. ---------- (3.2) 

These results could be obtained directly from the 

corresponding results for the M/M/1 queue by simply 

replacing 𝜌 with 𝜉.   

The mean waiting time in M/M/1 queue is given by 

𝑊𝑞 =
𝜆

𝜇(𝜇 − 𝜆)
. 

Since  𝜌 =
𝜆

𝜇
,  replacing  𝜆 with 𝜇𝜉  gives Equation (3.2). 
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Numerical example 

To show that  𝜉 = 𝜌   when the arrival process in a G/M/1 

queue is Poisson, i.e., when 𝐺 = 𝑀. 
Solution: 

We need to solve the functional equation 

𝜉 = 𝐹𝐴
∗(𝜇 − 𝜇𝜉) when   𝑎(𝑡) =  𝜆 𝑒−𝜆𝑡𝑑𝑡 =

 −
𝜆

𝑠+𝜆
𝑒−(𝑠+𝜆)𝑡|0

∞ =
𝜆

𝑠+𝜆
 , 

So that the function equation becomes 

𝜉 =
𝜆

𝜇(1 − 𝜉) + 𝜆
 

Or 
(𝜉 − 1)(𝜇𝜉 − 𝜆) = 0, 

With the two solution 𝜉 = 1   and 𝜉 =
𝜆

𝜇
= 𝜌. 

Only the latter solution satisfies the requirement that 0 < 𝜉 <
1. 
That is   𝜉 = 𝜌   when the arrival process in a G/M/1 queue is 

Poisson. 

In the case, the interarrival time is constant and equal to  
1

𝜆
 . 

The probability distribution function has the value 0 for  𝑡 <
1

𝜆
  and has the value 1 for 𝑡 ≥

1

𝜆
.  The density function is a 

Dirac impulse at the point 𝑡 =
1

𝜆
  and its Laplace transform is 

known to be  

𝐹𝐴
∗(𝑠) = 𝑒−

𝑠

𝜆. 

 

Solution 

The functional equation we need to solve for 𝜉 is 

𝜉 = 𝑒−(𝜇−𝜇𝜉)/𝜆 = 𝑒−(1−𝜉)/𝜌 

To proceed any further it is necessary to give a numeric value 

to 𝜌  and solve using an iterative procedure. Assuming 𝜌 =
4

5
  

and iterative process begin with 

𝜉(0) = 0.6 

With successive iterations of  

𝜉(𝑗+1) = 𝑒𝑥𝑝 (
𝜉(𝑗) − 1

0.8
) 

Gives 

when  𝑗 = 0,  𝜉(1) = exp(−0.500) = 0.6065 

when  𝑗 = 1,  𝜉(2) = exp(−0.4918) = 0.6115 

When  𝑗 = 2,  𝜉(3) = exp(−0.4856) = 0.6153 

When  𝑗 = 3,  𝜉(4) = exp(−0.4771) = 0.6206 

When  𝑗 = 4,  𝜉(5) = exp(−0.4743) = 0.6223 

When  𝑗 = 5,  𝜉(6) = exp(−0.4721) = 0.6267 

𝜉𝑗 = 0.600, 0.6115, 0.6153, 0.6206, 0.6223,  0.6267,  ⋯, 
Which is eventually converges to 𝜉 = 0.645705  (Agboola, 

2016). 

The mean number in this system at arrival epoch is given by 

𝐸[𝑁𝐴] =
𝜉

1 − 𝜉
= 1.82257. 

The probability that an arrival to this system finds it empty 

𝜋0 = 1 − 𝜉 = 0.35429   
 

Given a G/M/1 queue in which the service time is exponential  

Solution 

The Laplace transform of this distribution is given by 

𝐹𝐴
∗(𝑠) = (

𝜆1

𝑠+𝜆1
) (

𝜆2

𝑠+𝜆2
). 

Its expectation is (
1

𝜆1
+

1

𝜆2
) =

1

2
+
1

3
=
5

6
,  this gives 𝜌 =

6/5

2
=

3

5
. 

Substituting the value of  𝜆1and 𝜆2, we obtain 

𝐹𝐴
∗(𝑠) =

6

(𝑠 + 2)(𝑠 + 4)
 

So that  

𝐹𝐴
∗(𝜇 − 𝜇𝜉) =

6

(2 − 2𝜉 + 2)(2 − 2𝜉 + 4)
=

3

(𝜉 − 2)(𝜉 − 3)
, 

And the fixed point equation  𝜉 = 𝐹𝐴
∗(𝜇 − 𝜇𝜉) now becomes 

2𝜉3 − 9𝜉2 + 10𝜉 − 3 = 0 
This imply   

(𝜉 − 1)(2𝜉2 − 7𝜉 + 3) = 0 

Which has the three roots  
1

2
, 1  𝑎𝑛𝑑 3. 

Since we need the root that is strictly less than 1, which is 

only satisfy by the root 𝜉 =
1

2
= 0.5000. 

Therefore, the probabilities that it contains zero, one, or two 

customers are given, respectively, by 

𝑝0 = 1 − 𝜌 = 1 −
3

5
=
2

5
, 

𝑝1 = 𝜌(1 − 𝜉)𝜉
0 =

3

5
(1 −

1

2
)0.6 = 0.1200, 

𝑝2 =
3

5
𝜌 (1 −

1

2
)0.6065 = 0.182; 

The probability that an arrival finds the system empty is 
(1 − 𝜉) = 0.500; 

The mean number of customers seen by an arrival is 
𝜉

(1−𝜉)
=

0.500 and so on 

From Numerical example 4.3, we can write the distribution 

function of the G/M/1 queue as 

𝑊𝑞(𝑡) = 1 − (
1

2
) 𝑒

−(
5
2
)𝑡

 

=
1

2
𝑒
−(
5
2
)𝑡
;    𝑡 ≥ 0, 

which has the value 
1

2
  when 𝑡 = 0. 

The mean time spent waiting in this system is 

𝑊𝑞 =
𝜉

𝜇(1 − 𝜉)
=

0.5

5(1 − 0.5)
=
1

5
 

 

 

Conclusion 

In this research, the steady state transition probability matrix 

were obtained for G/M/1 queue and compared with the result 

from Markovian arrival and Markovian service times 

queueing system (M/M/1). The formulae for waiting time 

distribution, probability distribution and density functions for 

the response time (total system time) in a G/M/1 system were 

obtained. Illustrative numerical examples were demonstrated 

to shown its usefulness in solving the real life problem and we 

arrived at 𝜉𝑗 = 0.600, 0.6115, 0.6153, 0.6206, 0.6223, 0.6267, 

⋯, which is eventually converges to 𝜉 = 0.645705. 
Therefore, the probabilities that it contains zero, one or two 

customers are given, respectively by 0.4, 0.12 and 0.182. The 

probability that arrival find the system empty s obtained 0.5, 

the mean number of customers seen by an arrival is 1.0 and 

the mean time spent waiting in this system is 0. 2. 
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